
BoosterNet: Improving Domain Generalization of Deep Neural Nets using
Culpability-Ranked Features

Nourhan Bayasi
University of British Columbia

nourhanb@ece.ubc.ca

Ghassan Hamarneh
Simon Fraser University

hamarneh@sfu.ca

Rafeef Garbi
University of British Columbia

rafeef@ece.ubc.ca

Abstract

Deep learning (DL) models trained to minimize empir-
ical risk on a single domain often fail to generalize when
applied to other domains. Model failures due to poor gen-
eralizability are quite common in practice and may prove
quite perilous in mission-critical applications, e.g., diag-
nostic imaging where real-world data often exhibits pro-
nounced variability. Such limitations have led to increased
interest in domain generalization (DG) approaches that im-
prove the ability of models learned from a single or multiple
source domains to generalize to out-of-distribution (OOD)
test domains. In this work, we propose BoosterNet, a lean
add-on network that can be simply appended to any arbi-
trary core network to improve its generalization capability
without requiring any changes in its architecture or train-
ing procedure. Specifically, using a novel measure of fea-
ture culpability, BoosterNet is trained episodically on the
most and least culpable data features extracted from crit-
ical units in the core network based on their contribution
towards class-specific prediction errors, which have shown
to improve generalization. At inference time, correspond-
ing test image features are extracted from the closest class-
specific units, determined by smart gating via a Siamese
network, and fed to BoosterNet for improved generaliza-
tion. We evaluate the performance of BoosterNet within
two very different classification problems, digits and skin
lesions, and demonstrate a marked improvement in model
generalization to OOD test domains compared to SOTA.

1. Introduction

The remarkable advances in deep learning (DL) mod-
els rendered deep neural networks (DNNs) ubiquitous in
various fields, particularly in computer vision including
safety-critical applications such as medical image analy-
sis [21, 32, 60]. Despite their relative success when applied
to new data in certain applications, practical deployment of
DNN based solutions remains very risky with one of the

main concerns being vulnerability to domain shifts which
leads to poor generalizability to out-of-distribution (OOD)
data. Such limitations not only impair model performance
but can result in serious unacceptable failures when test data
is drawn from a different distribution than that of the train-
ing data [16,43,58]. This unpredictable performance degra-
dation on real life data continues to hamper reliable practi-
cal deployment such as in healthcare.

Recognizing this serious problem, much research has re-
cently focused on improving model generalizability. In un-
supervised domain adaptation (UDA), the aim is to transfer
the knowledge of a label-rich training domain to unlabeled
test domains with the same classes as those of the training
data [31, 36, 49, 63, 66]. However, UDA methods have lim-
ited value due to the requirement of accessing some of the
test data which may not be available in advance. In Domain
generalization (DG) approaches, the aim is to instead utilize
a single or multiple source domains’ information to better
generalize to OOD domains without requiring any access to
the test data. The field of DG is quite rich with a spectrum of
techniques ranging from domain alignment [28, 46] to data
augmentation [51,57,65], meta-learning [7,34] and ensem-
ble learning [45, 55]. However, despite significant perfor-
mance improvements, most DG approaches still suffer from
common drawbacks. First, they typically require training
data from multiple domains, which can be rather challeng-
ing, costly and even infeasible, e.g., due to privacy issues
in medical data applications. Second, they often require re-
structuring or changes in the network architecture or learn-
ing strategy to achieve the desired performance [8,9,19,30].
For end users who are not seasoned data scientists, e.g., der-
matologists trying to classify skin lesions with minimal or
no training in DL, such amendments are impractical.

In this work, we propose a single-source DG framework
for improving generalizability of an arbitrary off-the-shelf
DNN (core network A) by learning from its mistakes. We
argue that BoosterNet ameliorates shortcut learning and
feature suppression, a problem that has only recently gained
more attention [12, 18, 44], where in the presence of mul-
tiple predictive input features, a model tends to only use a
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subset and ignores the other features often leading to ‘short-
cut’ decision rules that might perform well on training data
but would harm generalization ability and lead to poor ro-
bustness to data shifts. To combat shortcut learning and im-
prove generalization capabilities, BoosterNet comprises a
lean add-on network that is encouraged to learn, through
episodic training, from the most culpable features in the
core network A most associated with erroneous prediction
(hereafter referred to as confusion features). To balance
the learning process, BoosterNet is trained to also retain
focus on the most predictive ‘trivial’ characteristics of the
data, namely by training on the least culpable features as
well (hereafter referred to as discriminant features). A high
level overview of our DG framework is illustrated in Fig-
ure 1 (training and inference details are illustrated in Fig-
ure 2). Using our proposed culpability score, the confusion
and discriminant features are extracted from class-specific
units (filters/neurons) in network A being associated with
the highest and lowest culpability in erroneous prediction
in a specific class, respectively. At inference time, Booster-
Net processes a test image by extracting confusion and dis-
criminant features corresponding to the closest class-units
as determined by a smart gating mechanism based on a
Siamese network. Our extensive experiments illustrate that
our method outperforms state-of-the-art (SOTA) in single
domain generalization on classification benchmark datasets
including digits and medical skin images.

2. Related Work
Domain generalization (DG) has been intensively stud-

ied in recent years. Early DG approaches mainly focused
on data preparation and augmentation by creating new di-
verse training data samples to encourage models to learn
general representations that may better support generaliza-
tion [25,42,52,59,64]. While such methods only increased
the source capacity, an exception was proposed in [41, 61]
where both input and label spaces were augmented. Dif-
ferently, [57] developed randomized convolutions as a data
augmentation technique to stimulate an infinite number of
new domains with similar global shapes but random local
texture to improve model generalization.

In the context of DG methods focusing on representation
learning, the goal is to learn domain-invariant features that
are general and transferable to different domains. Muandet
et al. [13] proposed a kernel-based method to obtain do-
main invariant features. [37, 58] proposed a cross-domain
contrastive semantic alignment (CCSA) loss that encour-
ages intra-class similarity and inter-class difference across
all domains. Other methods explicitly minimized feature
distribution divergence across domains by minimizing ei-
ther the maximum mean discrepancy (MMD) [54], second
order correlation [40] or moment matching [39]. Learn-
ing domain-invariant features has also been performed via

Figure 1. Overview of BoosterNet. (Top) Training: BoosterNet is
trained on ‘confusion’ and ‘discriminant’ features extracted from
class-specific units in network A with the highest and lowest cul-
pability scores, respectively. (Bottom) Inference: Using a Siamese
network as a smart gate, the closest class of the test image is identi-
fied based on the shortest Euclidean distance and the correspond-
ing test image features are extracted from network A and fed to
BoosterNet for prediction.

domain-adversarial learning [28, 33, 46] as well as by mod-
ifying the core network architecture [9, 30, 38, 45].

Recently, with the rise of model-agnostic meta learning
(MAML) [10], meta-learning methods have become pop-
ular [14, 20, 26, 35, 47]. The idea is to simulate a virtual
meta-task by adopting an episodic training paradigm, i.e.,
splitting the available training domains into meta-train and
meta-test at each iteration to simulate the domain shift. Li
et al. [27] designed an episodic training procedure that de-
composes a deep network into feature extractor and classi-
fier components and then trains each component by simu-
lating it interacting with a partner which is badly tuned for
the current domain. In this manner, both feature extractor
and classifier components become robust and generalizable.
Dou et al. [6] introduced two complementary meta-losses
which explicitly regularize the semantic structure of the
feature space via a model-agnostic episodic learning pro-
cedure. [24] proposed a new episodic learning framework
where the meta-test data is generated by interpolating all
source domains to enhance the variety of the meta-task sim-
ulation. While contributing positively to address the gener-
alization problem, all the above methods rely on the avail-
ability of a number of training domains to avoid overfitting.

Most recently, the Fourier Transform has become a hot
area of research for domain generalization [56, 62]. The
main assumption is that Fourier phase information generally
contains high-level semantics that are not easily affected
by domain shifts. Thus, by learning from phase informa-
tion, the model may better extract the semantic concepts
from different image data that could prove robust to domain
shifts.

BoosterNet. The existing DG methods require changes
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in network architecture or optimization, which could be
challenging in some applications or for some users. Our
proposed BoosterNet can be easily coupled with any core
network without requiring any of the changes. BoosterNet
can be viewed as a harmonious combination of data prepa-
ration and episodic training-based DG approaches since we
leverage the training data to extract culpable-based features
and use episodic training to simulate domain shift and im-
prove generalization. To summarize, we make the following
contributions:

• We propose using the concept of feature culpability to
improve domain generalization from a single-source
domain. Our culpability score measures the contribu-
tion of each network unit towards erroneous class-wise
predictions.

• We propose BoosterNet, a simple network that acts as
an add-on to existing DNN networks to boost general-
izability by leveraging information from the least and
most culpable features to learn more generalizable pre-
dictive features.

• We conduct extensive experiments on two applications
with multi-domain datasets including digits and skin
lesion classification with 4 and 5 domains, respec-
tively, to validate the effectiveness of our framework,
and demonstrate superior performance over SOTA in
improving domain generalization.

3. Methods
We first describe our problem setting and overall frame-

work design. BoosterNet is a lean add-on network that
can be coupled with an arbitrary DNN (network A) to im-
prove generalization without changing its architecture or
optimization. Given a single-source training domain S,
network A is trained through standard supervised learn-
ing. BoosterNet learns from culpability-ranked features
(namely, confusion and discriminant features) extracted
from network A to improve generalization on OOD target
domains {T1, T2, · · ·} ∼ p(T ). BoosterNet training and in-
ference are summarised in Figure 2.

3.1. Culpability Scoring

Our culpability score [C]m,n quantifies the contribution
of each unit n in a network towards erroneous prediction
for each class m in the training dataset S [2]. To calculate
the scores, a pre-trained off-the-shelf classification network
A, with parameters θ and n units (filters/neurons), predicts
the class output y given an input image x through standard
supervised learning, e.g., cross-entropy loss (Figure 2 (step
1)). After training, we group the validation data {x, y} into
two groups per class m: Rm is the set of (x, y) pairs with
ground truth class m and predicted class m (i.e., Rightly

Figure 2. Details of BoosterNet training stage (steps 1 to 7) and
inference stage (steps 8 to 11) added onto a traditional network A.
In this example, our application case study is skin lesion classi-
fication, where the training dataset used is HAM [50] with RGB
input images categorized into seven skin lesion classes.

classified images);Wm is the set of (x, y) pairs with ground
truth class m but predicted class other than m (i.e.,Wrongly
classified images). To compute the culpability score for
each unit n, we analyze the rectified activations ani of the
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input data sample i across Rm and Wm as given in Equa-
tion 1, where h, w are the dimensions of the feature map.

[Ĉ]m,n =
1

|Wm|
∑

i∈Wm

∑
w,h

ani (w, h)

− 1

|Rm|
∑

i∈Rm

∑
w,h

ani (w, h)

(1)

Since, in a convolutional layer, an activation map is com-
puted from a single unit, we aggregate the activation map ani
across the spatial dimensions, hence the summations over
w, h in (1). The final [C]m,n is [Ĉ]m,n normalized by the
sum of all activation values:

[C]m,n = [Ĉ]m,n/
∑
m,n

[Ĉ]m,n (2)

For each class, low scores identify units less culpable in
generating errors for that specific class, i.e., units that gen-
erate discriminant features. Units with high scores on the
other hand are more culpable, i.e., units that generate con-
fusion features. We assume such culprit units to be class-
specific, i.e., each class may have its own culpability vector
identifying the units most/least incriminated in that class’s
erroneous/correct classification because a unit n may have a
distinct contribution to different classes (Figure 2 step (2)).

3.2. BoosterNet Training

BoosterNet cascades with a traditional ConvNet archi-
tecture f and model parameters θb, and is trained to improve
the performance on OOD data processed independently by
networkA. BoosterNet takes as input a tensor of class-wise
features Z of size W × H × C, where W and H are the
re-sized width and height of feature map, respectively, and
C is the number of feature channels, and predicts a class
output y as y = f (Z | θb). C = ξ + ϑ, where ξ and ϑ are
the desired numbers of discriminant and confusion features,
respectively, which can also be specified as a fraction (or
percentage) of the total number of feature maps in network
A. The class-specific features Z are extracted from certain
units in network A based on the culpability score for each
unit n as given in Equation 2. Specifically, we choose ξ%
of the units with the lowest culpability scores and ϑ% of
the units with the highest culpability scores to identify their
corresponding discriminant and confusion features, respec-
tively (Figure 2 (steps 3–6)). Using the ground truth infor-
mation available with the training set, BoosterNet is trained
to learn from those isolated predictive data features.

BoosterNet uses episodic training [42] for its optimiza-
tion based on performance on virtual test domains. Specif-
ically, in each learning iteration, we split the training fea-
tures Z into meta-train Ztr and meta-test Zte, where Ztr

and Zte are episodically sampled from the class-wise confu-
sion and discriminant features, respectively (Figure 2 (step

7)). Formally, the training paradigm consists of three parts
in each iteration to update θb:

1. The classification loss Ltask is computed on meta-train
features Ztr, and the model parameters of BoosterNet,
θb, are updated by a few steps of gradient descent with
a learning rate of η;

θ̂b ← θb − η∇θb Ltask (θb ;Ztr). (3)

2. The classification loss Ltask is evaluated on meta-test
features Zte; i.e., Ltask(θ̂b;Zte).

3. BoosterNet parameters θb are updated by the gradi-
ents calculated from a combined loss of meta-train and
meta-test;

θb ← θb − η∇θb

[
Ltask (θb ;Ztr) + Ltask

(
θ̂b ;Zte

)]
(4)

3.3. BoosterNet Inference

At inference time, the discriminant and confusion fea-
tures of a test image are extracted from network A and fed
to BoosterNet. Since each class may have a different cul-
pability vector, we design a smart gate using a Siamese net-
work [3] that only activate class-specific units most relevant
to the test image. We use a Siamese network to encode
each class in the training data into a unique output vector
(by averaging all image vectors within that class) and com-
pute the Euclidean distance between each of these vectors
and the test image’s vector. The class associated with the
smallest distance is then assigned as the most probable class
of the test image, and thus the corresponding units of that
class are activated to extract the test image discriminant and
confusion features, as demonstrated in Figure 2 (steps (8–
11)). It is important to mention that the Siamese network
is only used as a triggering gate to provide an initial class
assignment of the test image in order to facilitate the clas-
sification process of BoosterNet. We show in Section 5,
ablation study 3, that BoosterNet is capable of achieving a
good performance even without the Siamese network gate,
but gating is shown to improve performance.

4. Quantifying Domain Shift
It is important to analyze when domain shift is likely to

impact the performance of a model significantly. In order
to better understand and evaluate this, we calculate the rep-
resentation shift, R, proposed in [48], to quantify the sta-
tistical difference between the datasets in the evaluation of
BoosterNet in Section 5. This metric, R, measures the dif-
ferences in the distribution of layer activations of a model
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between datasets from two domains, capturing the model-
perceived similarity between the two datasets.

We denote by pTcln
the continuous distribution of

cln computed from the training input data XT ={
xT
1 , . . . , x

T
z

}
, where cln is the mean value of the acti-

vation map of each convolutional filter ni in a layer l,
and z is the number of images in XT . The test dataset,
XS =

{
xS
1 , . . . , x

S
q

}
where q is the number of images in

XS , similarly generates pScln
. The representation shift R is

then defined as the mean discrepancy D between the distri-
butions over all filters n in a layer l;

R
(
pT , pS

)
=

1

n

n∑
i=1

D
(
pTcln

, pScln

)
(5)

where D is an arbitrary discrepancy/distance metric be-
tween pTcln

and pScln
that tends towards zero when the two

datasets’ distributions are similar. That is, if the training
and test datasets (XT and XS ) are statistically similar or
are mapped to similar representations by the core model,
the feature responses should be similar and R

(
pT , pS

)
small. The basic idea is that the distributions across the two
datasets are likely to be similar (i.e., small distances) if the
model had indeed learnt domain-invariant features. If this is
not the case, then the representation of the first dataset de-
pends on features not present in the second dataset, likely
caused by domain shift. We demonstrate in Section 5
that even a small statistical shift between training and test
datasets significantly degrades the performance of the net-
work.

5. Experiments and Results
We demonstrate the DG performance of BoosterNet on

two very different benchmark datasets. We also carry out
detailed ablation studies to quantify the impact of the dif-
ferent components of BoosterNet.

5.1. Datasets

We evaluate performance within two applications. Our
first evaluation application is digit recognition, where we
use the Digits-DG benchmark data consisting of four
datasets: MNIST [23], MNIST-M [11], SYN [11], and
USPS [5], each of which represents 10 classes from differ-
ent domains. The four datasets mainly differ in font style,
background and image quality. We use the original train-
validation-split in each dataset throughout all our experi-
ments. We use the training set of MNIST for training net-
work A, and evaluate models on all other test domains.

Our second evaluation application is skin lesion clas-
sification where we use medical benchmark data consist-
ing of five publicly available skin lesion image datasets:
HAM10000 (HAM) [50], Dermofit (DMF) [1], Derm7pt
(D7P) [22], MSK [15] and UDA [15], each comprising of

real patient skin lesion images collected at different clinical
sites using different equipment. Each of the six datasets
contained a subset of seven classes. We partition each
dataset into 50% training, 20% validation, and 30% test
sets and we discard data for classes beyond their 7 common
classes. We use the training set of HAM for training net-
work A, and evaluate models on all other test set domains.

5.2. Implementation Details

For network A, we experimented with multiple core
networks that are literature standards including ResNet-
18 (RN18), ResNet-50 (RN50), ResNet-152 (RN152), and
VGG-16. We trained each model using cross-entropy loss
for 100 epochs, a constant learning rate of 1e-5 and a batch
size of 32. As for BoosterNet, the architecture was a regular
ConvNet with conv-pool-conv-pool-fc-fc-softmax layers.
We opted this architecture for simplicity and fairer com-
parison with SOTA. BoosterNet was trained using cross-
entropy loss for 50 epochs, a constant learning rate of 1e-
5 and a batch size of 8. Finally, the Siamese gate had
a ConvNet architecture of conv-pool-conv-pool-conv-pool-
fc-softmax in each branch. It was trained using a super-
vised contrastive loss for 100 epochs, a constant learning
rate of 1e-5 and a batch size of 32. For the skin lesions
benchmark, we balanced the classes within each dataset
since they suffered from extreme class-imbalance. To sim-
ulate realistic training approaches, we augmented the data
by resizing all images to 650× 650, randomly resizing and
cropping 224 × 224, and randomly flipping and rotating
[90◦, 180◦, 270◦]. The validation and test images were re-
sized to 650× 650.

5.3. Evaluation on Digits

Effect of domain shift on network A performance. In
ExpA-D, Table 1, we evaluate the performance of network
A on in-distribution target data (i.e., MNIST test set) as well
as OOD target data (i.e., other domain test sets). We ob-
served that all four core models performed well when tested
on in-distribution test data, achieving a classification accu-
racy of 99.34% in ExpB (best case scenario). However, the
performance on other domain test data was much worse,
dropping below 10% in some cases, due to domain shift.
To quantify the shift between different domain test sets, we
measured the representation shift score R calculated from
the last convolutional layer using the Wasserstein distance
as a discrepancy metric. We reported the values in brack-
ets in Table 1. The R value between training and test sets
of the same domain (e.g., MNIST/MNIST) is smaller than
that of different domains. We observed, in general, a clear
negative correlation between R and classification accuracy,
as expected. This confirmed that in contrast to a human
classifier who would not be tripped by such small statistical
domain shifts, all SOTA network architectures tested have
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Table 1. Evaluation on Digits: Test set classification results of experiments A - S. (–) indicates that BoosterNet is not used. ξ and ϑ are
set to 15% and 35%, respectively. ET and CT are abbreviations of episodic and conventional training, respectively. The training set in all
experiments is MNIST train set.

Experimental Setup Classification Accuracy % in Test Datasets (R Shift Values) Avg Classification ± std (%)
Exp Network A BoosterNet Training MNIST MNIST-M SYN USPS

Baselines
A RN18 – 98.81 (0.0201) 16.95 (0.425) 8.13 (0.911) 18.42 (0.295) 35.57±42.39
B RN50 – 99.34 (0.0165) 18.3 (0.415) 11.24 (0.836) 19.73 (0.351) 37.15±41.62
C RN152 – 98.01 (0.0216) 15.85 (0.533) 7.62 (0.981) 17.45 (0.472) 34.73±2.40
D VGG16 – 85.95 (0.0381) 13.22 (0.797) 6.89 (1.186) 13.88 (0.502) 29.98±37.44

BoosterNet (proposed)
E RN18 ET 99.01 (0.0182) 76.21 (0.189) 51.06 (0.304) 83.62 (0.088) 77.47±20.01
F RN50 ET 99.72 (0.017) 77.89 (0.097) 54.39 (0.299) 84.31 (0.081) 79.07±8.83
G RN152 ET 98.64 (0.022) 74.22 (0.214) 49.71 (0.318) 82.78 (0.091) 76.33±20.43
H VGG16 ET 97.33 (0.030) 69.53 (0.295) 47.26 (0.346) 79.63 (0.199) 73.43±20.89

BoosterNet without Episodic Training
I RN50 CT 98.15 65.98 49.31 77.53 72.74±20.52

BoosterNet without Culpability Sorting
J RN50 ET 94.29 49.37 37.81 73.05 63.63±25.15

BoosterNet without Class-specific Culpability-based Feature Selection
K RN50 ET 97.65 75.11 48.63 81.84 75.80±20.43

Training an End-to-End Modified Network A
L mod-RN50 CT 95.3 61.28 35.74 74.68 66.75±24.96

Comparison against SOTA
M Mixup [61] – 97.35 54.0 41.2 76.6 67.28±24.81
N M-ADA [42] – 99.29 67.49 48.95 78.53 73.56±21.04
O JiGen [4] – 99.14 57.48 43.26 77.35 69.31±24.31
P UgMG [41] – 98.92 67.37 57.06 77.25 75.15±17.86
Q PAR [53] – 99.31 58.14 44.67 76.17 69.57±23.65
R Self-super [17] – 98.98 58.15 41.92 77.1 69.03±24.59
S CCSA [37] – 98.94 49.29 37.31 83.72 67.31±28.83

failed to handle the domain shift and could not generalize.
Performance of BoosterNet. In ExpE-H, we appended

BoosterNet to each core network from ExpA-D. Through
episodic training, we trained BoosterNet with the corre-
sponding class-specific discriminant and confusion features
extracted from ξ=15% of the units with the lowest culpa-
bility scores and ϑ=35% of the units with the highest cul-
pability scores. ξ and ϑ were empirically chosen. The
classification results of BoosterNet on test sets are given in
Table 1. We observed significant improvement in perfor-
mance across all datasets using BoosterNet, demonstrating
the effectiveness of our framework in improving general-
ization capabilities by learning from network A’s culpable
features. In addition, we noticed that, with BoosterNet, R
values across domains are smaller which helped maintain-
ing a higher accuracy. For all remaining experiments, we
used RN50 as the core architecture of network A as it had
the best average performance.

Ablation Studies. The three main components in Boost-
erNet are: 1) episodic training, 2) culpability-based sort-
ing, and 3) class-specific feature selection. In ExpI-K, we
studied the effect of each component on BoosterNet perfor-
mance:

1. Validation of episodic training scheme: In ExpI
Table 1, we evaluated the performance of BoosterNet
without incorporating the episodic training scheme,

i.e., through conventional training. By comparing
with ExpF , we observed as expected that without
episodic training, accuracy dropped by ∼6.3% on av-
erage demonstrating that episodic training effectively
improves the generalizability of BoosterNet to OOD
data. Yet, even with a conventional training, Boost-
erNet had better generalization performance compared
to baseline in ExpB.

2. Validation of sorting culpability-based features: In
ExpJ , we validated the efficacy of the discriminant
and confusion features by training BoosterNet on a
set of random features, i.e., without incorporating the
culpability measure. Specifically, we selected random
units in network A and extracted the corresponding
random features, keeping the same size of the train-
ing data features as in ExpF . For the episodic train-
ing, meta-train and meta-test sets were randomly sam-
pled from the training data features. We present the
classification results on test sets in Table 1. We ob-
served a sharp drop in performance compared to re-
sults in ExpF , ∼15%, confirming that not all features
contribute positively to the generalization capability of
a model or are relevant to improving the final predic-
tions.

3. Validation of class-specific culpability-based fea-
ture selection: In ExpK, we gauged the effect of
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class-specific features on training BoosterNet. Specif-
ically, we identified units in network A contributing
to the overall correct or incorrect predictions across
all classes, then we extracted the corresponding fea-
tures and fed them to BoosterNet. Indeed, we dis-
covered that 18% of the units across all ξ sets are the
same whereas 23% of the units are common across all
ϑ sets. At inference, we discarded our Siamese gate
and we deployed these common units to extract test
image features. The classification results on the test
sets are shown in Table 1. While the performance
was better compared to ExpB (baseline), discarding
the class-specificity feature selection resulted in per-
formance drop compared to ExpF by ∼3%, highlight-
ing the usefulness of our class-specific feature selec-
tion. Though discarding class-specific selection is sim-
pler as no gating mechanism is needed and the units
are always fixed, we believe that it decreases reliabil-
ity as performance will be strongly dependent on cor-
relations between the different classes in the training
dataset.

Comparison against an end-to-end modified baseline.
In ExpL, instead of cascading BoosterNet with a core net-
work, we modified the core network architecture (RN50)
by removing the last layer and appending it with Booster-
Net (c.f. mod-RN50). We trained mod-RN50 in an end-
to-end manner on MNIST using cross-entropy loss for 100
epochs, a constant learning rate of 1e-5 and a batch size
of 32. We observed an improved performance of mod-
RN50 compared to RN50 baseline in ExpB, but perfor-
mance trailed behind that of using BoosterNet as a separate
network (ExpF , Table 1).

Comparison against SOTA DG methods. We com-
pared our proposed approach with existing DG meth-
ods from different categories: 1) Data augmentation:
Mixup [61] (ExpM), M-ADA [42] (ExpN ), JiGen [4]
(ExpO), and UgMG [41] (ExpP), 2) Adversarial training:
PAR [53] (ExpQ) and Self-super [17] (ExpR), 3) Feature
alignment: CCSA [37] (ExpS). We report the results in
Table 1. Clearly, BoosterNet outperforms all methods ex-
cept that UgMG on SYN is better by ∼3%, yet the average
performance across all test domains is lower than that of
BoosterNet. The worst performance belongs to Mixup and
CCSA, since the generation of training pairs in the former is
conducted only in a convex manner whereas the contrastive
loss in the latter is applied to a single training domain but
usually requires a number of training domains to avoid over-
fitting.

5.4. Evaluation on Skin Lesions

Repeating the same experiments. We repeated all ex-
periments on our second benchmark data, skin lesions, and
reported results in Table 2. We noted a similar tendency

(i.e., negative correlation) between R values across domains
and baseline network performance. However, Booster-
Net suffered less and improved generalization significantly
compared to baselines (ExpA-D vs ExpE-H). In the re-
maining skin-based experiments, we used RN18 as the core
architecture of network A as it had the best average per-
formance. From Table 2, we observed that without incor-
porating any of the three components of BoosterNet, i.e.,
episodic training (ExpI), culpability-based feature sorting
(ExpJ ), and class-specific selection (ExpK), the perfor-
mance dropped compared to ExpE by 6.2%, 25.2% and
9.7%, respectively. To further evaluate performance, we
compared BoosterNet against three DG methods that were
previously shown to be capable to generalize across OOD
domains on medical imaging data: a modified CCSA [58]
(ExpM), MixUP [61] (ExpN ) and LDDG [29] (ExpO).
BoosterNet outperformed SOTA in all OOD domains.

Effect of changing ξ, ϑ. We studied the effect of vary-
ing the two empirically set parameters we used: the percent-
age of culprit units with the lowest and highest culpability
scores (c.f. ξ% and ϑ%, respectively). Left and middle plots
in Figure 3 report the classification performance of Boost-
erNet on in-distribution (HAM) and OOD validation sets,
trained with different ξ & ϑ percentage values (for OOD
test sets, we average the results across the four OOD do-
mains). Comparing the results to baseline in ExpA, we ob-
served two interesting results: 1) training BoosterNet with
discriminant features only (c.f. 1st row) improved results on
HAM more than it did on averaged OOD sets, yet in both
cases the improvements were minimal, and 2) training with
confusion features only (c.f. 1st column) reduced the perfor-
mance of BoosterNet on HAM but significantly improved it
on OOD. From these results, we concluded that learning
from confusion features is more critical to achieving higher
generalization performance on OOD domains, but discrim-
inant features are still needed to balance the learning and
avoid forgetting some predictive characteristics belonging
to in-distribution data. From the validation results, we end
up setting ξ and ϑ to 20% and 30%, respectively, through
all experiments on skin lesions benchmark, and these val-
ues proved to be the best when evaluating BoosterNet on
all domain test sets (averaging in-distribution and OOD) as
shown in the right plot in Figure 3. Note: similar analy-
sis was conducted when choosing ξ% and ϑ% for the digits
experiments.

Comparison against cascaded BoosterNets. In a fi-
nal experiment, we attempt to answer this question: Can
we boost a BoosterNet? For that, we investigated the ef-
fect of cascading a number of BoosterNets , such that each
module aims to improve the performance of the previous
one. We chose a unified architecture for all branches (regu-
lar ConvNet) and followed the same procedure for extract-
ing discriminant and confusion features from the previous
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Table 2. Evaluation on Skin Lesions: Test set classification results of experiments A - O. (–) indicates that BoosterNet is not used. ξ and
ϑ are set to 20% and 30%, respectively. ET and CT are abbreviations of episodic and conventional training, respectively. The training set
in all experiments is HAM train set.

Experimental Setup Classification Accuracy % in Test Datasets (R Shift Values) Avg Classification ± std (%)
Exp Network A BoosterNet Training HAM DMF D7P MSK UDA

Baselines
A RN18 – 83.75 (0.0136) 30.86 (0.9895) 39.68 (0.892) 48.91 (0.626) 59.32 (0.617) 52.50±18.26
B RN50 – 82.12 (0.0351) 31.45 (0.332) 37.81 (0.204) 45.71 (0.146) 58.07 (0.136) 51.03±17.90
C RN152 – 81.92 (0.0413) 28.46 (1.32) 38.36 (1.09) 43.9 (0.979) 57.25 (0.758) 49.98±18.48
D VGG16 – 79.15 (0.092) 24.94 (1.43) 33.82 (1.17) 50.21 (0.901) 63.57 (0.882) 50.33±19.61

BoosterNet (proposed)
E RN18 ET 85.54 (0.081) 72.64 (0.197) 62.51 (0.341) 68.39 (0.281) 79.58 (0.151) 73.71±8.11
F RN50 ET 84.14 (0.093) 71.94 (0.201) 62.01 (0.362) 67.81 (0.310) 76.9 (0.177) 72.56±7.57
G RN152 ET 81.64 (0.099) 67.38 (0.295) 61.89 (0.400) 66.26 (0.351) 77.34 (0.163) 70.91±7.37
H VGG16 ET 80.2 (0.146) 68.17 (0.313) 60.35 (0.454) 63.69 (0.392) 76.24 (0.196) 69.73±7.46

BoosterNet without Episodic Training
I RN18 CT. 76.34 68.28 57.95 62.08 72.83 67.49±6.74

BoosterNet without Culpability Sorting
J RN18 ET 69.84 35.26 38.67 33.7 65.18 48.53±15.64

BoosterNet without Class-specific Culpability-based Feature Selection
K RN18 ET 80.61 53.25 51.95 63.27 71.05 64.02±10.83

Training an End-to-End Modified Network A
L mod-RN18 CT 79.63 42.57 44.8 56.32 70.51 58.76±14.39

Comparison against SOTA
M Modified CCSA [58] – 76.94 31.42 52.83 45.59 49.67 51.29±14.76
N MixUp [61] – 78.13 34.41 40.92 31.72 43.13 45.66±16.75
O LDDG [29] – 75.24 29.34 52.47 48.87 57.01 52.58±14.74

Figure 3. Performance of BoosterNet trained on different pairs of
ξ% & ϑ% on in-distribution validation set (left), averaged OOD
validation set (middle), and averaged test sets (right).

Figure 4. Performance of cascaded BoosterNets on in-distribution
and OOD validation sets. RN18 in ExpA is used as a reference.

network, with ξ=20% and ϑ=30% fixed. The classification
accuracy achieved on HAM and average OOD test sets is
shown in Figure 4. Though we observed an improved per-
formance on in-distribution and OOD sets with cascaded
BoosterNets, improvements were not as significant as after
the first BoosterNet, eventually resulting in ‘diminishing re-
turns’ with three, possibly due to training becoming harder
to achieve.

Performance of Siamese gate alone. We further quan-
tified the performance of the Siamese network gate in com-
parison to the correct ground truth class and the class pre-

dicted by BoosterNet. The classification accuracy of the
gate was 65.8% & 56.7%, which is ∼13% & 17% worse
than BoosterNet results in ExpF on MNIST & ExpE on
skin lesions, respectively. We argue that while Siamese net
may learn separable class representations, these are not gen-
eralizable enough to OOD data. Nonetheless, as a gating
mechanism, Siamese network remained useful, as it cap-
tured class-specific patterns beyond the common features
across classes, as observed in ablation study 3.

6. Conclusions

We proposed BoosterNet, a simple yet effective add-
on network capable of improving generalization capabil-
ities of arbitrary core DNNs via learning from discrimi-
nant and confusion features extracted from the core network
using a unit culpability criterion that measures the contri-
bution of each unit towards erroneous predictions in each
class. BoosterNet does not require changes of the core net-
work architecture or learning scheme, making it ideal for
non-expert DNN users in practical real-world applications.
Through a comprehensive set of experiments, we validated
BoosterNet on benchmarks data from two application areas
and showed improved generalization to OOD domains com-
pared to baselines and SOTA. One limitation in our work is
that training should contain all the possible classes; other-
wise BoosterNet would not be able to classify a test image
to a new unseen class. Future work includes improving per-
formance where BoosterNet can abstain if a test image be-
longs to a class that the networks has not seen before and
assign it to unknown class.
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