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Abstract. Skin lesion segmentation (SLS) plays an important role in
skin lesion analysis. Vision transformers (ViTs) are considered an auspi-
cious solution for SLS, but they require more training data compared to
convolutional neural networks (CNNs) due to their inherent parameter-
heavy structure and lack of some inductive biases. To alleviate this issue,
current approaches fine-tune pre-trained ViT backbones on SLS datasets,
aiming to leverage the knowledge learned from a larger set of natural im-
ages to lower the amount of skin training data needed. However, fully
fine-tuning all parameters of large backbones is computationally expen-
sive and memory intensive. In this paper, we propose AViT, a novel
efficient strategy to mitigate ViTs’ data-hunger by transferring any pre-
trained ViTs to the SLS task. Specifically, we integrate lightweight mod-
ules (adapters) within the transformer layers, which modulate the feature
representation of a ViT without updating its pre-trained weights. In ad-
dition, we employ a shallow CNN as a prompt generator to create a
prompt embedding from the input image, which grasps fine-grained in-
formation and CNN’s inductive biases to guide the segmentation task on
small datasets. Our quantitative experiments on 4 skin lesion datasets
demonstrate that AViT achieves competitive, and at times superior, per-
formance to SOTA but with significantly fewer trainable parameters. Our
code is available at https://github.com/siyi-wind/AViT.

Keywords: Vision Transformer · Data-efficiency · Efficiency · Medical
Image Segmentation · Dermatology.

1 Introduction

Melanoma is the most common and dangerous skin malignancy estimated to
cause 97,610 new cases and 7,990 deaths in 2023 the United States alone [32],
yet early diagnosis and treatment are highly likely to cure it. Automated skin
lesion segmentation (SLS), which provides thorough qualitative and quantitative
information such as location and border, is a challenging and fundamental op-
eration in computer-aided diagnosis [30]. As a pre-processing step of diagnosis,
it boosts the accuracy and robustness of classification by regularizing attention
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maps [40], offering the region of interest for wide-field images [4], or removing
lesion-adjacent confounding artifacts [27,1]. On the other hand, SLS can serve as
a simultaneously optimizing task for classification, enabling the models to obtain
improved performance on both two tasks [39]. SLS is also essential for skin color
fairness research [12], where the segmented non-lesion area is used to approxi-
mate skin tone [22]. Vision transformers (ViTs), with their inherent capability
to model global image context through the self-attention mechanism, are a set
of promising tools to tackle SLS [17]. Though ViTs have shown improved perfor-
mance compared to traditional convolutional neural networks (CNNs) [24], they
are more data-hungry than CNNs, i.e., need more training data, given the lack
of some useful inductive biases like weight sharing and locality [35]. This poses
a significant challenge in SLS due to the limited availability of training images,
where datasets often contain only a few hundred [29] or thousand [8] samples.

To alleviate ViTs’ data-hunger, previous SLS works incorporated some in-
ductive biases through hierarchical architecture [5], local self-attention [34], or
convolution layers [14]. Nevertheless, they trained the models from scratch and
overlooked the potential benefits of pre-trained models and valuable information
from other domains with abundant data. As transfer learning from ImageNet [9]
has been demonstrated advantageous for skin lesion tasks [28], an increasingly
popular and promising way is to deploy a large pre-trained ViT as the encoder,
and then fine-tune the entire model [37,42]. Despite achieving better perfor-
mance, these techniques that rely on transfer learning have two notable draw-
backs. First, a robust ViT typically has plenty of parameters, e.g., ViT-Base (86
million (M)) [10] and Swin-Base (88M) [25], thus making the full fine-tuning
strategy quite expensive in terms of computation and memory requirements,
especially when dealing with multiple datasets, i.e., we need to store an entire
model for each dataset. Second, updating all parameters of a large-scale pre-
trained model (full fine-tuning) on smaller datasets is found to be unstable [31]
and may instead undermine the model’s generalizable representations [41].

The newer parameter-efficient fine-tuning (PEFT) has been proposed as an
effective and efficient solution, which only tunes a small subset of the model’s
parameters. PEFT in computer vision can be divided into two main directions:
1) prompt tuning [21,2] and 2) adapter tuning [41,38,7]. The first direction uses
soft (i.e., tunable) prompts: task-specific parameters introduced into the frozen
pre-trained ViT backbone’s input space and tuned throughout the task-learning
process. For example, Jia et al. [21] utilized randomly initialized trainable pa-
rameters as soft prompts and prepended them to pre-trained ViT’s input for
downstream recognition tasks. The second direction uses adapters: trainable
lightweight modules inserted into the transformer layers, to modify the hidden
representation of the frozen ViT rendering it suitable for a specific task. These
PEFT approaches have shown substantially increased efficiency with compara-
ble, or even improved, performance compared to those of full fine-tuning on
low-data regimes. Nonetheless, very few works have adapted PEFT to medical
imaging. Wu et al. [38] employed adapters to steer the Segment Anything Model
(SAM) [23], a promptable ViT-based foundation model trained using 1 billion
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masks, to medical image segmentation tasks without updating SAM’s parame-
ters. However, they require additional pre-training on medical imaging data prior
to adaptation as well as hard prompts in the form of un-tunable information in-
put, such as free-form text or a set of foreground/background points, which
increases the computational cost and necessitates prior information collection.

To address ViTs’ data-hunger while maintaining the model’s efficiency, in
this work, we propose AViT, a novel transfer learning strategy that adapts a
pre-trained ViT backbone to small SLS datasets by using PEFT. We incor-
porate lightweight adapter modules into the transformer layers to modify the
image representation and keep the pre-trained weights untouched. Furthermore,
to enhance the information extraction, we introduce a shallow CNN network
in parallel with ViT as a prompt generator to generate a prompt embedding
from the input image. The prompt captures CNN’s valuable inductive biases
and fine-grained information, which guides AViT to achieve improved segmenta-
tion performance, particularly in scenarios with limited training data. By using
ViT-Base as the ViT backbone, the number of tunable parameters of our AViT
is 13.6M, which is only 13.7% of the total AViT’s parameters.

Our contributions can be summarized as follows. (1) To the best of our knowl-
edge, we are the first to introduce PEFT to directly mitigate ViTs’ data-hunger
in medical image segmentation. (2) We propose AViT, featuring adapters for
transferring a pre-trained ViT to the SLS task and a prompt generator for en-
hancing information extraction. (3) The experimental results on 4 different pub-
lic datasets indicate that AViT surpasses previous SOTA PEFT algorithms and
ViT-based SLS models without pre-trained backbones (gains 2.91% and 2.32%
on average IOU, respectively). Further, AViT achieves competitive, or even su-
perior performance, to SOTA ViT-based SLS models with pre-trained backbones
while having significantly fewer trainable parameters (13.6M vs. 143.5M).

2 Methodology

In skin lesion segmentation (SLS), the model is required to predict a segmen-
tation map Y ∈ {0, 1}H×W that partitions lesion areas based on an RGB skin
image X ∈ RH×W×3. In Fig. 1-a, AViT applies a ViT backbone pre-trained on
large natural image datasets to the downstream SLS task through adapters and
a prompt generator and only optimizes a few parameters. We briefly describe the
plain ViT backbone in Section 2.1 and discuss the details of AViT in Section 2.2.

2.1 Basic ViT

A plain ViT [10] backbone contains a patch embedding module and L trans-
former layers (Fig. 1-b). Given an image X, the patch embedding module first
splits the image into N non-overlapping patches, then flattens and maps them
to D-dimensional patch embeddings x ∈ RN×D through a linear projection,
where N = HW

P 2 is the number of patches, and (P ,P ) is the patch size. The
embedding sequence is then prepended with a learnable [class] token xclass
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Fig. 1. Architecture of AViT: (a) Model overview with its prompt generator (a shal-
low CNN network), a large pre-trained ViT backbone with adapters, and a compact
decoder. (b) Model details. (c) Details of a transformer layer with adapters. (d) Details
of our adapters. During training, all modules in (b,c,d) contoured with blue borders
are frozen, which encompasses 86.3% of AViT’s parameters.

to get x0 = [xclass;x] ∈ R(N+1)×D. To utilize the spatial prior, learnable po-
sition embeddings Epos ∈ R(N+1)×D, defined in [10], are added to x0 to get
z0 = x0 + Epos, which is the input of the first transformer layer. Each trans-
former layer (Fig. 1-c without the adapters) comprises a multi-head self-attention
module (MSA) and a multi-layer perceptron module (MLP), along with layer
norm (LN). The output of the lth transformer layer zl ∈ R(N+1)×D is:

z′
l = MSA(LN(zl−1)) + zl−1 (1)

zl = MLP (LN(z′
l)) + z′

l. (2)

After getting the output of the final transformer layer zL, we remove its [class]
token and reshape it to a 2D feature representation V ∈ RH

P ×W
P ×D.

2.2 AViT

Given a pre-trained ViT backbone, we integrate adapters in each transformer
layer to adjust the generated feature representation V adapted to skin images
while leaving the weights of the backbone fixed. In addition, to enhance the
information extraction, we employ a prompt generator in parallel, which is a
shallow CNN network that produces a prompt embedding T based on the input
image. Finally, a lightweight decoder combines V and T to predict a segmenta-
tion map. During training, we solely optimize the adapters, prompt generator,
layer norm in the ViT backbone, and decoder, which collectively account for
13.7% of AViT’s parameters. The details of these extensions are as follows.
Adapter Tuning: Similar to [20], we insert the adapter after MSA and MLP
of each transformer layer (Fig. 1-c). The adapter (Fig. 1-d) contains two linear
layers and a GELU function, which first projects the D-dimensional input into
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a smaller dimension D
r , where r is the reduction ratio, and projects it back to D

dimension, i.e., Adapter(input) = GELU(input·W down)W up. W down ∈ RD×D
r

and W down ∈ RD
r ×D. The output of lth transformer layer with adapters is:

z′
l = Adapter(MSA(LN(zl−1))) + zl−1 (3)

zl = Adapter(MLP (LN(z′
l))) + z′

l. (4)

Information Enhancement by Prompt Tuning: Inspired by the prompt
tuning [21,13], we deploy soft prompts to extract more information from im-
ages and enrich the SLS task learning. Specifically, we utilize the first stage of
a ResNet-34 (including 7 convolutional layers) as the prompt generator to auto-
matically create a prompt embedding T from the input image. The prompt is
hypothesized to grasp CNN’s helpful inductive biases and fine-grained informa-
tion, e.g., spatial details, boundaries, and texture, to facilitate AViT’s segmen-
tation ability despite the small training datasets. Our soft prompt produced by
the network is more flexible, customized to each input image, and includes rich
information, in contrast to previous soft prompts that are simple free tunable
parameters and remain constant for all inputs. Moreover, it is worth noting that
our prompt generator has only a small number of parameters (0.23M), which
is different from previous hybrid models combining a ViT with a large CNN
backbone, e.g., ResNet-34 (21.3M) [37,19] or ResNet-50 (23.5M) [36].
Lightweight Decoder: We incorporate a compact decoder for efficient predic-
tion, as opposed to prior works that use complex decoding architectures involving
multi-stage up-sampling, convolutional operations, and skip connections [18,37].
This choice is driven by the powerful and over-parameterized nature of large
pre-trained ViT backbones, which have demonstrated strong transferability to
downstream tasks [28]. As visualized in Fig. 1-b, after getting the feature rep-
resentation V from the ViT backbone and the prompt embedding T from the
prompt generator, we first pass V through the atrous spatial pyramid pooling
module (ASPP) proposed in [6], which uses multiple parallel dilated convolu-
tional layers with different dilation rates, to obtain a feature that extracts local
information while capturing lesion context at different scales. After that, we up-
sample the output feature of ASPP to get V̂ , which has the same resolution as
T . Finally, V̂ is concatenated with T and sent to a projection head, which is
formed by 3 convolutional layers connected by ReLU activation functions.

3 Experiments

Datasets and Evaluation Metrics: We evaluate our AViT on 4 public SLS
databases collected from different sources: ISIC 2018 (ISIC) [8], Dermofit Image
Library (DMF) [3], Skin Cancer Detection (SCD) [16], and PH2 [29], which
contain 2594, 1212, 206, and 200 skin images along with their segmentation
maps, respectively. We perform 5-fold cross-validation and measure our model’s
segmentation performance using Dice and IOU metrics, computational cost at
inference via gigaFLOPs (GFLOPs), and memory footprint via the number of
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Table 1. Skin lesion segmentation (SLS) results comparing BASE (AViT w/o both
adapters and the prompt generator and is fully fine-tuned), AViT, and SOTA algo-
rithms. We report the models’ parameter count in millions (M). The 2nd column shows
which pre-trained backbone the model used. R-34/50 represents ResNet-34/50.

Model Pre- #Total #Tuned GFL- Segmentation Results in Test Sets (%)
trained Param. Param. OPs Dice ↑ IOU ↑

backbone (M) ↓ (M) ↓ ↓ ISIC DMF SCD PH2 Avg±std ISIC DMF SCD PH2 Avg±std

(a) Full Fine-tuned BASE & Proposed PEFT Method
BASE ViT-B 91.8× 91.8× 18.0 90.77 91.69 91.95 95.64 92.510.22 83.71 84.89 85.42 91.72 86.430.34

AViT ViT-B 99.4 (13.6×) 13.6× 20.9 91.74 92.04 93.16 95.66 93.150.42 85.22 85.47 87.39 91.72 87.450.70

(b) PEFT Methods
VPT ViT-B 92.8 (7.0×) 7.0× 26.5 90.89 91.26 89.09 93.14 91.100.46 83.83 84.14 80.76 87.27 84.000.74

AdaptFormer ViT-B 93.0 (7.2×) 7.2× 18.2 91.12 91.27 89.65 93.76 91.450.42 84.15 84.18 81.49 88.33 84.540.67

(c) SLS Methods w/o Pre-trained Backbones & Trained From Scratch
SwinUnet None 41.4× 41.4× 8.7 89.64 90.67 89.77 94.24 91.080.57 81.94 83.19 82.07 89.24 84.110.79

UNETR None 87.7× 87.7× 20.2 89.60 90.53 88.13 93.92 90.550.87 81.86 83.02 79.96 88.68 83.381.24

UTNet None 10.0× 10.0× 13.2 89.68 89.87 88.11 93.29 90.230.61 81.99 81.91 79.71 87.62 82.810.77

MedFormer None 19.2× 19.2× 13.0 90.47 90.85 90.60 94.82 91.680.74 83.22 83.52 83.53 90.23 85.131.12

Swin UNETR None 25.1× 25.1× 14.3 90.19 91.00 90.71 94.54 91.610.49 82.78 83.77 83.54 89.74 84.960.74

(d) SLS Methods w/ Pre-trained Backbones & Fully Fine-tuned
H2Former R-34 33.7× 33.7× 24.7 91.17 91.29 92.76 95.65 92.720.63 84.35 84.22 87.04 91.77 86.850.91

FAT-Net R-34, DeiT-T 28.8× 28.8× 42.8 91.26 91.32 93.03 96.07 92.920.48 84.42 84.25 87.23 92.48 87.100.80

BAT R-50 46.2× 46.2× 10.3 91.33 91.20 92.95 95.84 92.830.46 84.40 84.03 87.08 92.04 86.890.78

TransFuse R-50, DeiT-B 143.5× 143.5× 63.4 91.73 91.96 94.11 96.18 93.500.27 85.22 85.33 89.03 92.69 88.070.47

needed parameters. Due to the table width restriction and the high number of
columns, we only report the standard deviation (std) of average Dice and IOU
in tables and provide the std for each dataset in the supplementary material.
Implementation Details: We resize the images to 224×224 and augment them
by random scaling, shifting, rotation, flipping, Gaussian noise, and brightness
and contrast changes. The ViT backbone of AViT is a ViT-B/16 [10], with a
patch size of 16×16, pre-trained on ImageNet-21k. Similar to [41], the reduction
ratio r of the adapters is 4. The output dimension of ASPP is 256. All models
are deployed on a single TITAN V and trained using a combination of Dice and
binary cross entropy loss [11,33] for 200 epochs with the AdamW optimizer [26],
a batch size of 16, and an initial learning rate of 1×10−4, which changes through
a linear decay scheduler whose step size is 50 and decay factor γ = 0.5.
Comparing Against The Baseline (BASE): BASE is established by re-
moving the adapters and the prompt generator of AViT and optimizing all
the parameters during training. In Table 1-a, AViT achieves superior perfor-
mance compared to BASE, with average IOU and Dice improvements of 1.02%
and 0.64%, respectively, while utilizing significantly fewer trainable parameters
(13.6M vs. 91.8M). This suggests that BASE exhibits overfitting, and full fine-
tuning is unsuitable for transferring knowledge to smaller skin datasets, whereas
AViT effectively leverages the learnt knowledge and demonstrates strong gener-
alization capability on the SLS task. When considering the memory requirements
for the 4 datasets, BASE would require storing 4 entirely new models, resulting
in a total of 91.8 × 4 = 367.2M parameters. On the contrary, AViT only needs
to store the pre-trained ViT backbone once, resulting in reduced storage needs,
i.e., 85.8+13.6× 4 = 140.2M. As the number of domains increases, the memory
savings offered by AViT compared to BASE will become even more pronounced.
Comparing Against State-of-the-Art (SOTA) Methods: We conduct ex-
periments on SOTA PEFT and SLS approaches. We first reproduced VPT [21]
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Fig. 2. Visual comparison with different SOTA methods. The green contours are the
ground truth, and the red contours are the segmentation results.

that added learnable visual prompts in the input space and AdaptFormer [7] that
introduced adapters in the transformer layers. We set the number of prompts in
VPT to 100. In Table 1-b, AViT surpasses them across all datasets (gains 2.91%
on average IOU over AdaptFormer), with comparable trainable parameters.

Additionally, we compare various ViT-based SLS algorithms and divide them
into two groups. Group 1 is models without pre-trained backbones and trained
from scratch: SwinUnet [5], UNETR [18], UTNet [14], MedFormer [15], and Swin
UNETR [34]. Group 2 is models with pre-trained backbones and fully fine-tuned:
H2Former [19], FAT-Net [37], BAT [36], and TransFuse [42]. H2Former and BAT
used pre-trained ResNet but randomly initialized transformer modules. Table 1-
c shows that AViT outperforms Group 1 across all datasets by a large margin
(increases average IOU of MedFormer by 2.32%), with comparable and even
fewer trainable parameters (13.6M vs. 19.2M). Table 1-d illustrates that AViT
achieves competitive or higher segmentation performance compared to Group 2,
with fewer trainable parameters. For instance, AViT achieves a marginally lower
average Dice compared to TransFuse (0.35% difference), yet its parameter count
and computational complexity (GFLOPs) are 1/10 and 1/3 less than that of
TransFuse, respectively. Fig. 2 visualizes AViT’s segmentation performance.
AViT on Different Pre-trained ViT Backbones: We conduct experiments
using ViTs in varied sizes, structures, or training strategies, including ViT-L/16,
Swin-B, Swin-L [25], and DeiT-B, as the pre-trained backbone. For Swin-B/L,
we use the output of its 3rd stage as the encoded image feature, whose resolution
is the same as ViT-B’s output feature. DeiT-B and ViT-B have the same archi-
tecture but different training strategies. In Table 2-a, for each ViT backbone,
AViT achieves competitive and even higher performance compared to fully fine-
tuned BASE, but with substantially fewer parameters (trainable and total) for
the 4 datasets, indicating the applicability of our method on different ViTs.
Ablation Study: To show the efficacy of our proposed components in Sec-
tion 2.2, we freeze the parameters of BASE’s pre-trained ViT to get BASE∗ and
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Table 2. Experiments using different pre-trained ViT backbones and ablation study
of AViT. ∗ means the pre-trained backbone is frozen throughout training. −P or −A

represent not using the prompt generator or adapters in AViT.

Model Pre- #Total #Tuned GFL- Segmentation Results in Test Sets (%)
trained Param. Param. OPs Dice ↑ IOU ↑

backbone (M) (M) ISIC DMF SCD PH2 Avg±std ISIC DMF SCD PH2 Avg±std

(a) Applicability to Various Pre-trained ViT Backbones
BASE Swin-B 63.8× 63.8× 15.6 91.63 91.70 92.71 95.88 92.980.37 85.05 84.89 86.60 92.13 87.170.61

AViT Swin-B 68.9 (9.5×) 9.5× 18.3 91.54 91.73 93.60 95.68 93.140.39 84.90 84.94 88.12 91.77 87.430.64

BASE Swin-L 139.8× 139.8× 32.3 91.64 91.69 92.93 95.83 93.020.25 85.08 84.86 86.97 92.04 87.240.43

AViT Swin-L 151.1 (17.6×) 17.6× 36.3 91.56 91.91 93.74 96.07 93.320.31 84.93 85.24 88.38 92.47 87.760.50

BASE ViT-L 311.2× 311.2× 61.2 91.37 91.76 93.23 95.86 93.060.29 84.60 84.99 87.52 92.09 87.300.47

AViT ViT-L 336.9 (33.7×) 33.7× 67.7 91.54 91.77 93.48 95.73 93.130.48 84.88 85.01 87.94 91.85 87.420.79

BASE DeiT-B 91.8× 91.8× 18.0 91.48 91.82 93.63 95.83 92.940.32 84.77 85.10 86.53 92.04 87.110.52

AViT DeiT-B 99.4 (13.6×) 13.6× 20.9 91.70 91.85 93.67 95.97 93.300.31 85.14 85.17 88.22 92.30 87.710.51

(b) Ablation Study
BASE∗ ViT-B 91.8 (6.0×) 6.0× 18.0 87.18 89.23 86.24 90.17 88.200.46 77.92 80.81 76.27 82.30 79.330.65

AViT−P ViT-B 98.9 (13.2×) 13.2× 19.4 91.47 91.80 91.18 94.75 92.300.31 84.74 85.04 83.98 90.09 85.960.48

AViT−A ViT-B 92.3 (6.5×) 6.5× 19.5 90.87 91.00 89.09 93.87 91.210.83 83.78 83.72 81.18 88.53 84.301.19

AViT ViT-B 99.4 (13.6×) 13.6× 20.9 91.74 92.04 93.16 95.66 93.150.42 85.22 85.47 87.39 91.72 87.450.70

remove the adapters and prompt generator in AViT to get AViT−A and AViT−P ,
respectively. In Table 2-b, BASE∗ attains average Dice and IOU of 88.20% and
79.33%, respectively. However, it still falls far behind fully fine-tuned BASE with
92.51% and 86.43% on average Dice and IOU, respectively. After adding adapters
to BASE (AViT−P ), the average Dice and IOU increase by 4.10% and 6.63%,
respectively; after adding a prompt generator to BASE (AViT−A), the average
Dice and IOU increase by 3.01% and 4.97%, respectively. Finally, AViT achieves
the highest segmentation results and significantly outperforms BASE∗ (increases
average Dice and IOU by 4.95% and 8.12%, respectively) with only 7.6M more
trainable parameters. The above results reveal that our proposed mechanisms
boost the segmentation performance, and a combination of both performs best.

4 Conclusion

We propose AViT, a new method to alleviate ViTs’ data-hunger and apply it on
small skin lesion segmentation (SLS) datasets by employing a pre-trained ViT
backbone whilst keeping computation and storage memory costs very low via
parameter-efficient fine-tuning (PEFT). Specifically, we integrate adapters into
the transformer layers to modulate the backbone’s image representation with-
out updating its pre-trained weights and utilize a prompt generator to produce
a prompt embedding, which captures CNNs’ inductive biases and fine-grained
information to guide AViT for segmenting skin images on limited data. Our ex-
periments on 4 datasets illustrate that AViT outperforms other PEFT methods
and achieves comparable or even superior performance to SOTA SLS approaches
but with considerably fewer trainable and total parameters. Moreover, the ex-
periments using different ViT backbones and an ablation study showcase the
applicability of AViT and the effectiveness of AViT’s components. Future work
will focus on improving AViT’s architecture so that it can achieve SOTA seg-
mentation performance while retaining computation and memory efficiency.
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