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Main idea:

They uses a fixed pretrained model, and they propagate the knowledge to learn new tasks using a layer-wise loss term.

Main findings:
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Note: this is a form of knowledge distillation to maximize the

knowledge transfer between two networks.
Fig. 2. Overview of TwF and detail of Cpp: Given a batch of samples from the current

task or from B, we i) extract intermediate features from both the student and fixed
sibling backbones at multiple layers; i) compute the corresponding binarized attention
maps W(-); iit) pull the attention-masked representations of the two models closer.

3. The authors are worring about this objective, which places
too much emphasis on maximizing knowledge transfer from
the sibling model, and that might lead to a problem of
excessive rigidity. In other words, the model may become too
fixed or inflexible in its behavior, making it less adaptable to

the specific data or requirements of the current task.
4. The objective function is updated as this:
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In this context, the gating mechanism helps to make the model more flexible and adaptable by selecting and aligning specific spatial regions of
feature maps in a more controlled and fine-grained manner. This selective attention allows the model to focus on the most relevant information and
adapt to the specific data and requirements of the current task, preventing it from becoming excessively rigid.

Detail of Lgp
How to learn M(.)? m_W)

The attention maps M(-) are computed through specific layers, whose architectural M) 0] =
design follows some previous works.

Specifically, they:

- forward the input activation maps of the sibling into two parallel branches,
producing respectively @ Channel Attention MCh(-) map and a Spatial Attention
MSp(-) map.

- these two intermediate results aré summed and then activated through a binary
Gumbel-Softmax sampling, which allows to model discrete on-off decisions
regarding which information we want to propagate.
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MSp(-) map.

- these two intermediate results aré summed and then activated through a binary
Gumbel-Softmax sampling, which allows to model discrete on-off decisions
regarding which information we want to propagate.
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Total objective function:
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gating masks to different examples. The intuition is that each example has
its own preferred subset of channels to be forwarded from the sibling.

i=1 gy . |

.1!

@ L® E { | Fio.0y (@) = UIF + 3 - £y, fip, VJ(HJ] This loss is used for knowledge replay (not very important to achieve robust results.
(zd)~8 They used a small buffer with some samples from previous tasks to avoid forgetting.
It ensures current model can still perform well on previous samples.
iy 1 () Tt 2
Lep = i __,) T Z HM”’"( i1 e ( ~ ReLUn(A' JJ) ”2] This feature propagated loss has two terms. The first one is what we
(zstys =L discussed earlier (maximizing knowledge transfer) whereas the second term
< is BCE. (m) is the previous attention maps of samples from older tasks. This
E [BCE (M(hf”; f), m“])] BCE term helps distill and maintain past attention maps, which contributes to
[j’fi'_’_‘_). _“f preserving knowledge from previous tasks.

Note that loss 2 is related to CL, where it's only applied on samples from buffer. The other losses are applied on both current and stored samples.

vr Datasets and experiments:
- For performance evaluation, they used average final accuracy and final forgetting.
- For scenarios and datasets, they described the transfer of knowledge from the pretrain by facilitating the amount of similarity between the two
distributions.

- Scenario A: High simifarity - They use CIFAR-100 as the pretrain dataset and then evaluate the models on Split CIFAR-10 (5 binary tasks)
- Results of this:

Table 1. Final Average Accuracy {FAA) [f] and Final Forgetting (FF) [L] on Split N(_)te that all COI’T'IDBTItO_fS unde_rgo an ml_tlal pretraining phase
CIFAR-10 w. pretrain on CIFAR-100. prior to CL, thus ensuring a fair comparison.

FAA (FF) Split CIFAR-10 {pretr, CLAR-100)

Method Class-IL Task-IL

Joint {UB) 92.89 () 9838 [—)

Finetune 19.76 (98.11) B400 (17.75)

ol [T 26,10 (85.83) 81.84 {19.50]

LwF [34] 19,80 (97.96) 86.41 (14.35)

Buffer Size ) 5120 al 4120

ER [53] 67.24 (38.24)  B6.2T (13.68)  U6.27 (2.23)

COPL [ T5.47 (21.80) 1) 96,77 (1.23)

iCaRL [0 76.73 (14.70) 90)  97.25 (0.74) 9752 (D

DER++ [#] THAZ (20.14) AT.88 (8.02) G425 [4.44G) a6.42 (1.99)
ER-ACE [T0]  77.83 (10.63)  86.20 (5.58)  96.41 (2.11)  07.60 {0.66)
TwF (ours) 83.65 (11.50) 809.55 (6.85) 07.49 (0.86) 98.35 (0.17)

Table 2. Accuraey (forgetting) on Split CTEAR-100 w. pretrain on Tiny TrageNe!. - Scenario B: Low similarity - pretrained on tiny-imagenet and
evaluated on split cifar 100.
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Lwl {ours)  56.53 2J.HJ‘

B148 (15.23) &b Wl 91,11 [2.24)




Table 3. Accuracy (forgetting) on Split CUB-200 w. pretrain on ImageNet. - Scenario C: Low similarity - pretrained on ImageNet and evaluated on Split

FAA (FF) Split CUB-200 (pretr. ImageNet) CUB-ZOO
Method Class-IL Task-IL

Joint (UB) 78.54 (—) 86.48 (—)
Finetune 8.56 (82.38) 36.84 (50.95)

oEwC [57] 8.20 (71.46) 33.94 (40.36)

LwF [34] 8.59 (82.14) 22.17 (67.08)
Buffer Size 400 1000 400 1000

ER [53] 145.82 (40.76)  59.88 (25.65)  75.26 (9.82)  80.19 (4.52)
CO?L [11] 8.96 (32.04)  16.53 (20.99)  22.91 (26.42) 35.79 (16.61)
iCaRL [50] 46.55 (12.48)  49.07 (11.24)  68.90 (3.14)  70.57 (3.03)
DER++ [8] 56.38 (26.59)  67.35 (13.47) 77.16 (7.74)  82.00 (3.25)
ER-ACE [10]  48.18 (25.79) 58.19 (16.56)  74.34 (9.78)  78.27 (6.09)

TwF (ours) 57.78 (18.32) 68.32 (6.74) 79.35 (5.77) 82.81 (2.14)

Table 5. Dissimilar pretrain tasks: accuracy on CIFAR-100 pretrained on SVHN.

- Scenario D: Low similarity - pretrained on SVHN and evaluated on Split Cifar 100.

FAA (FF) Class-IL Task-IL

Buffer size 500 2000 500 2000
iCaRL [50] 30.50 (21.81) 42.02 (18.78)  78.89 (4.04) 80.65 (2.24)
DER#++ [8] 36.46 (53.47) 5229 (24.04)  75.05 (16.22) 83.36 (8.04)
TwF (ours) 43.56 (40.02) 56.15 (21.51)  80.89 (10.12) 87.30 (3.12)

The paper conducts different and relevant ablation studies. Please refer to them for more details.



