Do Pre-trained Models Benefit Equally in Continual Learning?

November 7, 2023 9:08 PM

Main idea: ×

This paper investigates the effect of pretraining on existing CL methods. introduce a simple yet effective The authors proposed a new simple baseline that employs minimum regularization and leverages the more beneficial pre-trained model, coupled with a two-stage training pipeline.

Main findings: ×

- It makes more sense to grab a pretrained ofthe-shelf network when applying any CL algorithm in real-life.
- It has been proofed (figure to the right) that _ different CL methods receive different benefits from pretraining. That is, an underperforming algorithm could become competitive and even achieve state- of-the-art performance, when all algorithms start from a pre-trained model.
- Pretraining is especially important when training data is small.

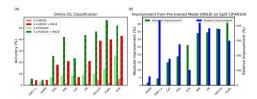


Figure 1. (a) CL algorithms trained from scratch fail on Split CUB200, a more complex dataset than Split CIFAR100, which necessitates the use of pre-trained models (denoted as '+ RN18') that dramatically increase the accuracy of a wide spectrum of algorithms. (b) Different CL algorithms receive vastly different benefits from pre-trained models, and the superiority between algorithms changes. These findings suggest that it is critical for the community to develop CL algorithms with a pre-trained model and understand their behaviors. [Best viewed in color.]

	Analysis:	Reduced RN18 (R-RN18). ResNet18 whose number of channels is reduced [25] compared with a standard one, which is used in the experiment of training from scratch.
	Axis Configurations Pre-trained Models (7) Reduced RN18, RN18, RN50, CLIP RN50, SimCLR RN50, SwAV RN50, Barlow Twins RN50	ImageNet Pre-trained RN18, RN50. ResNets pre-trained on ImageNet [15]. CLIP Pre-trained RN50. ResNet50 pre-trained on the We- binageText dataset based on Contrastive Language-Image
_	CL Algorithms (11) ER, MIR, GSS, iCaRL, GDumb, SCR, LwF, EWC++, AGEM, Co ² L, DER++	Pre-training (CLIP) [31]. SimCLR RN50. ResNet50 pre-trained on ImageNet with
	CL Scenarios (2) CIL, Online CIL Table 1. We conduct the analyses of pre-trained models in CL by dissecting the space into three axes: 11 different pre-trained models, 2) different CL algorithms, and 3 different CL scenarios.	the SimCLR loss that brings closer features of different aug- mentations from the same image, while pushing apart those from different images [10]. SwAV RS90, ResNet50 pre-trained on ImageNet with the SwAV mechanism that predicts the cluster assignment of a view from the representation of another one [6].
	Total of C classes that are split into T tasks (no overlappi	ng) again that of views from different image to be zero [43].

Evaluation scenario: CIL and online CIL, where the model can only have access to the data once unless with a replay buffer. In other words, the model can not iterate over the data of the current task for multiple epochs, which is common in CIL.

Evaluation datasets: CIFAR100 with 20 tasks, CUB200, Mini-ImageNet, FGVC-Aircraft, QuickDraw

Finetuning strategy: They initialize the model with the pretrained weights and then finetune in a supervised or self-supervised approach.

Two-stage pipeline: They have two training phases. In the first one (streaming phase), the model learns from the streaming current data for 1 epoch and stores some examples in the memory. In the second phase (offline), the model learns from the samples in the buffer for 30 epochs.

Results:

	Split CIFAR100									
	Model	ER [33]	MIR [2]	GSS [4]	LwF [24]	iCaRL [32]	EWC++[8]	GDumb [30]	AGEM [9]	SCR [26]
Scratch 🧲	R-RN18 RN18	9.07±1.31 43.69±1.67	8.03±0.78 42.02±1.53	6.86±0.60 25.59±0.45	8.44±0.82 23.40±0.12	14.26±0.79 56.64±0.23	1.00±0.00 5.36±0.26	9.80±0.46 46.76±0.73	3.00±0.47 4.72±0.21	25.80±0.99 51.93±0.06
K		+34.62	+33.99	+18.73	+14.96	+42.38	+4.36	+36.96	+1.72	+26.13
With pretraining										
1 5	Model	ER	MIR	GSS	LwF	iCaRL	EWC++	GDumb	AGEM	SCR
	R-RN18	1.24±0.11	1.44±0.08	1.46±0.22	1.47±0.1	1 1.82±0.2	4 0.80±0.20	4.49±0.56	0.67±0.12	5.64±0.75
	RN18	21.05±1.07	20.95±0.66	17.65±0.45	5 6.79±0.3	6 39.95±1.4	43 4.47±0.10	38.63±0.44	4.59±0.30	43.03±1.80
	Δ	+19.81	+19.51	+16.19	+5.32	+38.13	+3.67	+34.14	+3.92	+37.39
	Split Mini-ImageNet									
	Model	ER	MIR	GSS	LwF	iCaRL	EWC++	GDumb	AGEM	SCR
	R-RN18	8.56±0.24	8.00±0.82	6.74±0.15	7.58±0.6	5 11.61±0.	78 1.00±0.00	7.01±0.40	3.04±0.21	33.87±1.84
	RN18	56.91±0.54	54.96±0.46	25.74±4.53	20.41±0.9	99 72.40±0.	52 4.79±0.14	40.00±0.37	5.23±0.41	67.94±0.11
	Δ	+48.35	+46.96	+19.00	+12.83	+60.79	+3.79	+29.99	+2.19	+34.07
Table 2. Accuracy in online CIL. Different CL algorithms benefit from a pre-trained model very differently, and the compa									nparison resul	

Table 2. Accuracy in online CLL, Different CL algorithms benefit from a pre-trained model very differently, and the comparison results between algorithms change when they are initialized from a pre-trained model. For instance, iCaRL outperforms SCR, the best-performing model when trained from scratch, on Split CIFAR100 (56.64 vs. 51.93) and Split Mini-ImageNet (72.40 vs. 67.94). This indicates that training from scratch does not serve as a fairground for comparison between different algorithms, in addition to its poor applicability to complex datasets. R-RN18 and RN18 stand for Reduced ResNet18 trained from scratch and ImageNet pre-trained ResNet18, respectively.

Compared to from scratch, we see a huge improvement in different CL methods when pretraining is used (supervised finetuning)

×

Model	ER [33]	MIR [2]	GSS [4]	LwF [24]	iCaRL [32]	EWC++[8]	GDumb [30]	AGEM [9]	SCR [26] DER++ [5]	Co ² L [7]
R-RN18	9.07±1.31	8.03±0.78	6.86±0.60	8.44±0.82	14.26±0.79	1.00±0.00	9.80±0.46	3.00±0.47	25.80±0.99 15.72±1.33	2.31±0.64
RN18	43.69±1.67	42.02±1.53	25.59±0.45	23.40±0.12	56.64±0.23	5.36±0.26	46.76±0.73	4.72±0.21	51.93±0.06 44.42±1.29	5.68±3.19
RN50	50.88 ± 0.84	50.20 ± 2.80	31.53±3.37	26.68 ± 0.97	59.20 ± 0.33	3.47±1.42	57.37±0.21	4.49 ± 0.27	56.22±0.42 49.37±1.36	8.57±0.57
CLIP	52.31±2.66	55.38±0.83	25.60±4.50	37.21±2.14	26.05±12.33	*	55.10±0.22	17.22±2.52	30.93±5.44 53.01±0.18	1.12±0.16
SimCLR RN50	37.04±0.48	40.01±1.86	16.32±1.52	3.40±0.17	33.76±0.84	6.39±0.82	24.63±0.84	3.87±0.32	52.60±0.22 15.63±0.96	1.44±0.45
SwAV RN50	38.32±0.11	40.97±0.36	15.00±0.30	3.32±0.45	24.29±1.32	3.58±3.00	20.95±1.33	3.86±0.29	50.59±0.09 20.10±0.88	1.18±0.26
B.T. RN50	26.15 ± 0.62	18.18 ± 1.60	8.38 ± 0.23	3.70±0.16	40.77±0.92	6.65±1.06	31.56±2.01	3.95 ± 0.31	48.35±0.73 5.26±0.17	1.10 ± 0.10
"EWC++ fails to train with losses of nan.										

Table 3. Accuracy of different pre-trained models when fine-tuned in a supervised manner on Split CIFAR100 in online CIL. In most cases, RN pre-trained on ImageNet (RN50 vs. CLIP RN50) in a supervised fashion (RN50 vs. SimCLR, SwAV, and Barlow Twins RN50) brings the largest accuracy increase. Red numbers mark pre-trained accuracy that is within/below one std. of the from-scratch counterpart, which indicates potential negative impacts. Bold numbers indicate the best accuracy amongst all methods with a specific model (e.g., 25.80 of SCR is the best within R-RN18). R-RN18, RN18, RN50, and CLIP stand for Reduced ResNet18 trained from scratch, ImageNet pre-trained ResNet18 and ResNet50, and CLIP pre-trained ResNet50, respectively. B.T. stands for Barlow Twins. [Best viewed in color.]

Different pretrained models have different influence, but overall speaking, ImageNet pretrained RN50 (i.e., **supervised fine-tuning**) yields the best results with most CL methods.

	(a)]	Experienc	e Replay (E	(b) Learning without Forgetting (LwF)						
Fine-Tuning From-scratch		Supervised		Self-supervised Fine-Tuning		ng From-scratch	From-scratch			
	R-RN18	RN18	RN50	CLIP	SimCLR RN50		R-RN18	RN18	RN50	CLIP
CIL			44.18±2.55 (50.96±2.29)			CIL	13.05±0.65 (8.33±4.35)	19.18±0.86 (-4.40±1.44)		35.52±1.90 (-3.97±1.25)
Online CIL			50.88±0.84 (42.93±0.67)			Online CI	L 8.44±0.82 (8.83±1.31)	23.40±0.12 (-2.14±2.32)		

Self-supervised fine-tuning (SimCLR loss) has less forgetting than supervised fine-tuning.

Table 5. Accuracy (Forgetting) of different models on Split CIFAR100. (a) *Self-supervised fine-tuning* (SimCLR) demonstrates a lower forgetting compared with supervised fine-tuning (20.26 vs. 50.96 of RN50 in CIL). (a)(b) CLIP, pre-trained with image-text pairs, shows less forgetting compared with ResNets pre-trained with curated ImageNet labels. Numbers outside/inside parentheses are accuracy/forgetting, respectively. R-RN18 and RN18 stand for Reduced ResNet18 and ImageNet pre-trained ResNet18, respectively.

★ Results of the proposed two-stage baseline:

The proposed method combines the simplest ER that exerts no regularization during training, ImageNet RN50, and the two-stage training pipeline discussed above.

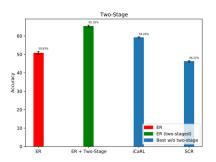


Figure 4. A simple second-staged offline training on memory data coupled with an ImageNet pre-trained ResNet50 turns a simple baseline into state of the art, suggesting the effectiveness of the proposed baseline. Note that SCR and iCaRL are the two best-performing methods when applied on the ImageNet pre-trained ResNet50. [Best viewed in color.]